1 | TITLE Cerebellum Granule Cell Model |
---|
2 | |
---|
3 | COMMENT |
---|
4 | KDr channel |
---|
5 | Gutfreund parametrization |
---|
6 | |
---|
7 | Author: A. Fontana |
---|
8 | Last revised: 12.12.98 |
---|
9 | ENDCOMMENT |
---|
10 | |
---|
11 | NEURON { |
---|
12 | SUFFIX CGC_KV |
---|
13 | USEION k READ ek WRITE ik |
---|
14 | RANGE gkbar, ik, g, alpha_n, beta_n |
---|
15 | RANGE Aalpha_n, Kalpha_n, V0alpha_n |
---|
16 | RANGE Abeta_n, Kbeta_n, V0beta_n |
---|
17 | RANGE n_inf, tau_n |
---|
18 | RANGE comp2134_vcbdur, comp2134_vcinc, comp2134_vchold, comp2134_vchdur, comp2134_vcbase, comp2134_vcsteps |
---|
19 | |
---|
20 | } |
---|
21 | |
---|
22 | UNITS { |
---|
23 | (mA) = (milliamp) |
---|
24 | (mV) = (millivolt) |
---|
25 | } |
---|
26 | |
---|
27 | PARAMETER { |
---|
28 | :Kbeta_n = -0.0125 (/mV) |
---|
29 | |
---|
30 | Aalpha_n = -0.01 (/ms-mV) |
---|
31 | Kalpha_n = -10 (mV) |
---|
32 | V0alpha_n = -25 (mV) |
---|
33 | Abeta_n = 0.125 (/ms) |
---|
34 | |
---|
35 | Kbeta_n = -80 (mV) |
---|
36 | V0beta_n = -35 (mV) |
---|
37 | v (mV) |
---|
38 | gkbar= 0.003 (mho/cm2) : 0.0015 |
---|
39 | ek = -84.69 (mV) |
---|
40 | celsius = 30 (degC) |
---|
41 | |
---|
42 | comp2134_vcbdur = 100.0 |
---|
43 | comp2134_vcinc = 10.0 |
---|
44 | comp2134_vchold = -71.0 |
---|
45 | comp2134_vchdur = 30.0 |
---|
46 | comp2134_vcbase = -69.0 |
---|
47 | comp2134_vcsteps = 8.0 |
---|
48 | |
---|
49 | } |
---|
50 | |
---|
51 | STATE { |
---|
52 | n |
---|
53 | } |
---|
54 | |
---|
55 | ASSIGNED { |
---|
56 | ik (mA/cm2) |
---|
57 | n_inf |
---|
58 | tau_n (ms) |
---|
59 | g (mho/cm2) |
---|
60 | alpha_n (/ms) |
---|
61 | beta_n (/ms) |
---|
62 | } |
---|
63 | |
---|
64 | INITIAL { |
---|
65 | rate(v) |
---|
66 | n = n_inf |
---|
67 | } |
---|
68 | |
---|
69 | BREAKPOINT { |
---|
70 | SOLVE states METHOD derivimplicit |
---|
71 | g = gkbar*n*n*n*n |
---|
72 | ik = g*(v - ek) |
---|
73 | alpha_n = alp_n(v) |
---|
74 | beta_n = bet_n(v) |
---|
75 | } |
---|
76 | |
---|
77 | DERIVATIVE states { |
---|
78 | rate(v) |
---|
79 | n' =(n_inf - n)/tau_n |
---|
80 | } |
---|
81 | |
---|
82 | FUNCTION alp_n(v(mV))(/ms) { LOCAL Q10 |
---|
83 | Q10 = 3^((celsius-6.3(degC))/10(degC)) |
---|
84 | alp_n = Q10*Aalpha_n*linoid(v-V0alpha_n, Kalpha_n) |
---|
85 | } |
---|
86 | |
---|
87 | FUNCTION bet_n(v(mV))(/ms) { LOCAL Q10 |
---|
88 | Q10 = 3^((celsius-6.3(degC))/10(degC)) |
---|
89 | bet_n = Q10*Abeta_n*exp((v-V0beta_n)/Kbeta_n) |
---|
90 | } |
---|
91 | |
---|
92 | PROCEDURE rate(v (mV)) {LOCAL a_n, b_n |
---|
93 | a_n = alp_n(v) |
---|
94 | b_n = bet_n(v) |
---|
95 | tau_n = 1/(a_n + b_n) |
---|
96 | n_inf = a_n/(a_n + b_n) |
---|
97 | } |
---|
98 | |
---|
99 | FUNCTION linoid(x (mV),y (mV)) (mV) { |
---|
100 | if (fabs(x/y) < 1e-6) { |
---|
101 | linoid = y*(1 - x/y/2) |
---|
102 | }else{ |
---|
103 | linoid = x/(exp(x/y) - 1) |
---|
104 | } |
---|
105 | } |
---|