1 | ;; |
---|
2 | ;; Lexer combinator library. |
---|
3 | ;; |
---|
4 | ;; Based on the SML lexer generator by Thant Tessman. |
---|
5 | ;; |
---|
6 | ;; Copyright 2009-2014 Ivan Raikov and the Okinawa Institute of |
---|
7 | ;; Science and Technology. |
---|
8 | ;; |
---|
9 | ;; |
---|
10 | ;; This program is free software: you can redistribute it and/or |
---|
11 | ;; modify it under the terms of the GNU General Public License as |
---|
12 | ;; published by the Free Software Foundation, either version 3 of the |
---|
13 | ;; License, or (at your option) any later version. |
---|
14 | ;; |
---|
15 | ;; This program is distributed in the hope that it will be useful, but |
---|
16 | ;; WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
17 | ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
18 | ;; General Public License for more details. |
---|
19 | ;; |
---|
20 | ;; A full copy of the GPL license can be found at |
---|
21 | ;; <http://www.gnu.org/licenses/>. |
---|
22 | |
---|
23 | (module lexgen |
---|
24 | |
---|
25 | ( seq star bar |
---|
26 | try pass pos opt lst eos |
---|
27 | bind bind* rebind rebind* drop |
---|
28 | |
---|
29 | lex |
---|
30 | (Input->Token tok) <Token> |
---|
31 | (Token->CharLex char range set lit) <CharLex> |
---|
32 | ) |
---|
33 | |
---|
34 | |
---|
35 | (import scheme chicken data-structures) |
---|
36 | (require-library srfi-1) |
---|
37 | (import (only srfi-1 first second filter-map fold concatenate every lset<= )) |
---|
38 | (require-extension typeclass) |
---|
39 | (require-library input-classes) |
---|
40 | (import (only input-classes <Input>)) |
---|
41 | |
---|
42 | (require-extension utf8 utf8-srfi-14) |
---|
43 | |
---|
44 | |
---|
45 | ;; |
---|
46 | ;; This is a lexer generator comprised in its core of five small |
---|
47 | ;; functions. The programmer assembles these functions into regular |
---|
48 | ;; expression pattern-matching functions. |
---|
49 | ;; |
---|
50 | ;; The idea is that a pattern matcher function takes a list of |
---|
51 | ;; streams, and returns a new list of streams advanced by every |
---|
52 | ;; combination allowed by the pattern matcher function. |
---|
53 | ;; |
---|
54 | ;; A stream is a list that can take one of two forms: |
---|
55 | ;; |
---|
56 | ;; 1) A list of two elements: the first element is a list of |
---|
57 | ;; elements consumed by the pattern matcher; the second element is a |
---|
58 | ;; list of characters not yet consumed. E.g., the list |
---|
59 | ;; |
---|
60 | ;; ((a) (b c d e)) |
---|
61 | ;; |
---|
62 | ;; represents a stream that contains the consumed character a, |
---|
63 | ;; and the unconsumed characters b c d e. |
---|
64 | ;; |
---|
65 | ;; 2) A list of three elements: the first two elements are as |
---|
66 | ;; before, but the third element is a procedure that is applied to |
---|
67 | ;; the tail of the unconsumed list, in order to obtain the next |
---|
68 | ;; character. E.g., the list: |
---|
69 | ;; |
---|
70 | ;; ((a) (b <port>) <procedure (lambda (in) (list (read-char in) in))> |
---|
71 | ;; |
---|
72 | ;; represents a stream that contains the consumed character a, the |
---|
73 | ;; unconsumed character b, and an input port to read subsequent |
---|
74 | ;; character from; and a procedure that reads one character from the |
---|
75 | ;; input port, and returns it along with the modified port. Note |
---|
76 | ;; that the use of side-effecting structures such as ports will lead |
---|
77 | ;; to erroneous results with backtracking parsers. |
---|
78 | ;; |
---|
79 | ;; Also note that the number of streams returned by the function |
---|
80 | ;; typically won't match the number of streams passed in. If the |
---|
81 | ;; pattern doesn't match at all, the empty list is returned. |
---|
82 | ;; |
---|
83 | |
---|
84 | |
---|
85 | ;; This matches a sequence of patterns. |
---|
86 | |
---|
87 | (define (seq p1 p2) |
---|
88 | (lambda (sk fk strm) |
---|
89 | (p1 (lambda (strm1) (p2 sk fk strm1)) fk strm))) |
---|
90 | |
---|
91 | ;; This matches either one of two patterns. It's analogous to patterns |
---|
92 | ;; separated by the '|' in regular expressions. |
---|
93 | |
---|
94 | (define (bar p1 p2) |
---|
95 | (lambda (sk fk strm) |
---|
96 | (p1 sk (lambda _ (p2 sk fk strm)) strm))) |
---|
97 | |
---|
98 | |
---|
99 | ;; Kleene closure. Analogous to '*' |
---|
100 | |
---|
101 | (define (star p) |
---|
102 | (lambda (sk fk strm) |
---|
103 | (p (lambda (strm1) |
---|
104 | (if (eoi? (cadr strm1)) (sk strm1) |
---|
105 | ((star p) sk sk strm1))) sk strm))) |
---|
106 | |
---|
107 | ;; this parser always succeeds |
---|
108 | |
---|
109 | (define (pass sk fk s) (sk s)) |
---|
110 | |
---|
111 | ;; this parser matches end of input |
---|
112 | |
---|
113 | (define (eos sk fk s) (if (eoi? (cadr s)) (sk s) (fk s))) |
---|
114 | |
---|
115 | ;; Positive closure. Analogous to '+' |
---|
116 | |
---|
117 | (define (pos pat) (seq pat (star pat))) |
---|
118 | |
---|
119 | ;; Optional pattern. Analogous to '?' |
---|
120 | |
---|
121 | (define (opt pat) (bar pat pass)) |
---|
122 | |
---|
123 | ;; Matches a consecutive list of patterns |
---|
124 | |
---|
125 | (define (lst ps) |
---|
126 | (let ((ps (reverse ps))) |
---|
127 | (let recur ((ps (cdr ps)) (p1 (car ps))) |
---|
128 | (cond ((null? ps) p1) |
---|
129 | (else (recur (cdr ps) (seq (car ps) p1))))))) |
---|
130 | |
---|
131 | |
---|
132 | ;; datatype used by bind and drop |
---|
133 | (define-record-type box (make-box contents) |
---|
134 | box? (contents box-contents )) |
---|
135 | |
---|
136 | (define box make-box) |
---|
137 | (define unbox box-contents) |
---|
138 | |
---|
139 | ;; Given a list (X_1 ... X_n), returns a list ( (X_1 ... X_(n-1)) X_n ) |
---|
140 | (define-inline (split-at-last x) |
---|
141 | (if (null? x) (list #f (list)) |
---|
142 | (let loop ((prev (list (car x))) (rest (cdr x))) |
---|
143 | (cond ((null? rest) |
---|
144 | (if (null? (cdr prev)) |
---|
145 | (list '() (car prev)) |
---|
146 | (list (reverse (cdr prev)) (car prev)))) |
---|
147 | (else (loop (cons (car rest) prev) (cdr rest))))))) |
---|
148 | |
---|
149 | ;; helpers for bind |
---|
150 | (define-inline (bind-apply f) |
---|
151 | (lambda (s) |
---|
152 | (cond ((pair? s) |
---|
153 | (let ((eaten (car s)) |
---|
154 | (food (cadr s))) |
---|
155 | (let* ((ep (split-at-last eaten)) |
---|
156 | (eaten1 (car ep)) |
---|
157 | (eaten0 (cadr ep))) |
---|
158 | (assert (box? eaten0)) |
---|
159 | (let ((x (and (list? eaten1) (f eaten1)))) |
---|
160 | (if x (list (append x (unbox eaten0)) food) |
---|
161 | (list (unbox eaten0) food))) |
---|
162 | ))) |
---|
163 | (else s)))) |
---|
164 | |
---|
165 | (define-inline (box-stream s) |
---|
166 | (cond ((pair? s) |
---|
167 | (let ((eaten (car s)) |
---|
168 | (food (cadr s))) |
---|
169 | (list (list (box eaten)) food))) |
---|
170 | (else s))) |
---|
171 | |
---|
172 | ;; Binds a procedure f to the consumed tokens returned by p |
---|
173 | ;; Calls failure on empty input |
---|
174 | (define (bind f p) |
---|
175 | (let ((ba (bind-apply f))) |
---|
176 | (lambda (sk fk s) |
---|
177 | (if (eoi? (cadr s)) |
---|
178 | (fk s) |
---|
179 | (let ((sk1 (lambda (s1) (sk (ba s1)))) |
---|
180 | (fk1 (lambda (s1) (fk s)))) |
---|
181 | (p sk1 fk1 (box-stream s))))))) |
---|
182 | |
---|
183 | ;; Same as bind, but calls success on empty input |
---|
184 | (define (bind* f p) |
---|
185 | (let ((ba (bind-apply f))) |
---|
186 | (lambda (sk fk s) |
---|
187 | (if (eoi? (cadr s)) |
---|
188 | (sk (ba (box-stream s))) |
---|
189 | (let ((sk1 (lambda (s1) (sk (ba s1)))) |
---|
190 | (fk1 (lambda (s1) (fk s)))) |
---|
191 | (p sk1 fk1 (box-stream s))))))) |
---|
192 | |
---|
193 | |
---|
194 | (define (drop p) |
---|
195 | (bind (lambda x #f) p)) |
---|
196 | |
---|
197 | |
---|
198 | ;; helpers for rebind |
---|
199 | (define-inline (rebind-apply g) |
---|
200 | (lambda (i s) |
---|
201 | (cond ((pair? s) |
---|
202 | (let ((eaten (car s)) |
---|
203 | (food (cdr s))) |
---|
204 | (let* ((ep (split-at-last eaten)) |
---|
205 | (eaten1 (car ep)) |
---|
206 | (eaten0 (cadr ep))) |
---|
207 | (assert (box? eaten0)) |
---|
208 | (let* ((x (and (list? eaten1) (g i eaten1))) |
---|
209 | (res (if x (cons (append x (unbox eaten0)) food) |
---|
210 | (cons (unbox eaten0) food)))) |
---|
211 | res)))) |
---|
212 | (else s)))) |
---|
213 | |
---|
214 | ;; Applies a procedure f to the un-consumed tokens, then applies |
---|
215 | ;; procedure g to the result of f and the tokens returned by p |
---|
216 | ;; Calls failure on empty input |
---|
217 | (define (rebind f g p) |
---|
218 | (let ((ra (rebind-apply g))) |
---|
219 | (lambda (sk fk s) |
---|
220 | (if (eoi? (cadr s)) |
---|
221 | (fk s) |
---|
222 | (let* ((info ((compose f cadr) s)) |
---|
223 | (sk1 (lambda (s) (sk (ra info s))))) |
---|
224 | (p sk1 fk (box-stream s))))))) |
---|
225 | |
---|
226 | ;; Same as rebind, but calls success on empty input |
---|
227 | (define (rebind* f g p) |
---|
228 | (let ((ra (rebind-apply g))) |
---|
229 | (lambda (sk fk s) |
---|
230 | (if (eoi? (cadr s)) |
---|
231 | (sk s) |
---|
232 | (let* ((info ((compose f cadr) s)) |
---|
233 | (sk1 (lambda (s) (sk (ra info s))))) |
---|
234 | (p sk1 fk (box-stream s))))))) |
---|
235 | |
---|
236 | |
---|
237 | ;; This takes a pattern and a string, turns the string into a list of |
---|
238 | ;; streams (containing one stream), applies the pattern, and returns |
---|
239 | ;; the longest match. |
---|
240 | |
---|
241 | (define (->char-list s) |
---|
242 | (if (string? s) (list (string->list s)) s)) |
---|
243 | |
---|
244 | (define (lex pat error ss) |
---|
245 | (let* ((stream (cond ((string? ss) `(() . ,(->char-list ss))) |
---|
246 | ((pair? ss) ss) |
---|
247 | (else (error ss))))) |
---|
248 | (pat (lambda (s) (list (reverse (first s)) (second s))) |
---|
249 | (lambda (s) (error s)) stream))) |
---|
250 | |
---|
251 | (define-record-type eoi (make-eoi) eoi?) |
---|
252 | (define (stream-eoi? strm) (eoi? (cadr strm))) |
---|
253 | |
---|
254 | (define-class <Token> (<Input> input) tok) |
---|
255 | |
---|
256 | |
---|
257 | ;; 'tok' builds a pattern matcher function that applies procedure p to |
---|
258 | ;; a given token and an input character. If the procedure returns a |
---|
259 | ;; true value, that value is prepended to the list of consumed |
---|
260 | ;; elements, and the input character is removed from the list of input |
---|
261 | ;; elements. |
---|
262 | |
---|
263 | (define=> (tok <Input>) |
---|
264 | (lambda (t p ) |
---|
265 | (lambda (sk fk strm) |
---|
266 | (and (pair? strm) |
---|
267 | (let ((c (car strm)) |
---|
268 | (u (cadr strm))) |
---|
269 | (cond ((eoi? u) (fk strm)) |
---|
270 | ((empty? u) (fk (list c (make-eoi)))) |
---|
271 | ((p t (head u)) => |
---|
272 | (lambda (ans) (sk (list (cons ans c) (tail u))))) |
---|
273 | (else (fk strm)) |
---|
274 | ))) |
---|
275 | ))) |
---|
276 | |
---|
277 | |
---|
278 | |
---|
279 | ;; Converts a binary predicate procedure to a binary procedure that |
---|
280 | ;; returns its right argument when the predicate is true, and false |
---|
281 | ;; otherwise. |
---|
282 | |
---|
283 | (define (try p) (lambda (x y) (let ((res (p x y))) (and res y)))) |
---|
284 | |
---|
285 | (define (Input->Token I) (make-<Token> I (tok I))) |
---|
286 | |
---|
287 | (define-class <CharLex> (<Token> T) char set range lit) |
---|
288 | |
---|
289 | ;; Matches a single character |
---|
290 | |
---|
291 | (define=> (char <Token>) |
---|
292 | (lambda (c) (tok c (try char=?)))) |
---|
293 | |
---|
294 | ;; Matches any of a SRFI-14 set of characters. |
---|
295 | |
---|
296 | (define=> (set <Token>) |
---|
297 | (lambda (s) |
---|
298 | (let ((cs (if (char-set? s) s (list->char-set (if (string? s) (string->list s) s))))) |
---|
299 | (tok cs (try char-set-contains?))))) |
---|
300 | |
---|
301 | ;; Range of characters. Analogous to character class '[]' |
---|
302 | |
---|
303 | (define=> (range <Token>) |
---|
304 | (letrec ((range0 |
---|
305 | (lambda (a b) |
---|
306 | (if (char<? b a) (range0 b a) |
---|
307 | (tok (ucs-range->char-set (char->integer a) (+ 1 (char->integer b))) |
---|
308 | (try char-set-contains?)))))) |
---|
309 | range0)) |
---|
310 | |
---|
311 | ;; Matches a literal string s |
---|
312 | |
---|
313 | (define=> (lit <Token>) |
---|
314 | (lambda (s) |
---|
315 | (let ((f (lambda (t) (tok t (try char=?))))) |
---|
316 | (lst (map f (if (string? s) (string->list s) s)))))) |
---|
317 | |
---|
318 | |
---|
319 | (define (Token->CharLex T) |
---|
320 | (make-<CharLex> T |
---|
321 | (char T) |
---|
322 | (set T) |
---|
323 | (range T) |
---|
324 | (lit T) |
---|
325 | )) |
---|
326 | |
---|
327 | |
---|
328 | ) |
---|