1 | ;;;; stack-combinators.scm |
---|
2 | ;;;; Kon Lovett, Mar '09 |
---|
3 | ;;;; Portions from a 'comp.lang.scheme' posting by "wayo.cavazos@gmail.com" |
---|
4 | |
---|
5 | ;These are useless & sigle valued! |
---|
6 | |
---|
7 | (module stack-combinators |
---|
8 | |
---|
9 | (;export |
---|
10 | uni uni2 uni3 uni@ |
---|
11 | bi bi2 bi3 bi@ |
---|
12 | tri tri2 tri3 tri@ |
---|
13 | dip |
---|
14 | dup dupd |
---|
15 | swap |
---|
16 | drop drop/2) |
---|
17 | |
---|
18 | (import scheme chicken) |
---|
19 | |
---|
20 | ;; |
---|
21 | |
---|
22 | (define uni |
---|
23 | (case-lambda |
---|
24 | ((x f c) (c (f x))) |
---|
25 | ((f c) (lambda (x) (uni x f c))) |
---|
26 | ((c) (lambda (f) (uni f c))) |
---|
27 | (() (lambda (c) (uni c))))) |
---|
28 | |
---|
29 | (define uni2 |
---|
30 | (case-lambda |
---|
31 | ((x y f c) (c (f x y))) |
---|
32 | ((f c) (lambda (x y) (uni2 x y f c))) |
---|
33 | ((c) (lambda (f) (uni2 f c))) |
---|
34 | (() (lambda (c) (uni2 c))))) |
---|
35 | |
---|
36 | (define uni3 |
---|
37 | (case-lambda |
---|
38 | ((x y z f c) (c (f x y z))) |
---|
39 | ((f c) (lambda (x y z) (uni3 x y z f c))) |
---|
40 | ((c) (lambda (f) (uni3 f c))) |
---|
41 | (() (lambda (c) (uni3 c))))) |
---|
42 | |
---|
43 | (define uni@ ; for completeness only |
---|
44 | (case-lambda |
---|
45 | ((x f c) (c (f x))) |
---|
46 | ((f c) (lambda (x) (uni@ x f c))))) |
---|
47 | |
---|
48 | ;; |
---|
49 | |
---|
50 | (define bi |
---|
51 | (case-lambda |
---|
52 | ((x f g c) (c (f x) (g x))) |
---|
53 | ((f g c) (lambda (x) (bi x f g c))) |
---|
54 | ((f g) (lambda (c) (bi f g c))) |
---|
55 | ((c) (lambda (f g) (bi f g c))) |
---|
56 | (() (lambda (c) (bi c))))) |
---|
57 | |
---|
58 | (define bi2 |
---|
59 | (case-lambda |
---|
60 | ((x y f g c) (c (f x y) (g x y))) |
---|
61 | ((f g c) (lambda (x y) (bi2 x y f g c))) |
---|
62 | ((f g) (lambda (c) (bi2 f g c))) |
---|
63 | ((c) (lambda (f g) (bi2 f g c))) |
---|
64 | (() (lambda (c) (bi2 c))))) |
---|
65 | |
---|
66 | (define bi3 |
---|
67 | (case-lambda |
---|
68 | ((x y z f g c) (c (f x y z) (g x y z))) |
---|
69 | ((f g c) (lambda (x y z) (bi3 x y z f g c))) |
---|
70 | ((f g) (lambda (c) (bi3 f g c))) |
---|
71 | ((c) (lambda (f g) (bi3 f g c))) |
---|
72 | (() (lambda (c) (bi3 c))))) |
---|
73 | |
---|
74 | (define bi@ |
---|
75 | (case-lambda |
---|
76 | ((x y f c) (c (f x) (f y))) |
---|
77 | ((f c) (lambda (x y) (bi@ x y f c))))) |
---|
78 | |
---|
79 | ;; |
---|
80 | |
---|
81 | (define tri |
---|
82 | (case-lambda |
---|
83 | ((x f g h c) (c (f x) (g x) (h x))) |
---|
84 | ((f g h c) (lambda (x) (tri x f g h c))) |
---|
85 | ((f g h) (lambda (c) (tri f g h c))) |
---|
86 | ((c) (lambda (f g h) (tri f g h c))) |
---|
87 | (() (lambda (c) (tri c))))) |
---|
88 | |
---|
89 | (define tri2 |
---|
90 | (case-lambda |
---|
91 | ((x y f g h c) (c (f x y) (g x y) (h x y))) |
---|
92 | ((f g h c) (lambda (x y) (tri2 x y f g h c))) |
---|
93 | ((f g h) (lambda (c) (tri2 f g h c))) |
---|
94 | ((c) (lambda (f g h) (tri2 f g h c))) |
---|
95 | (() (lambda (c) (tri2 c))))) |
---|
96 | |
---|
97 | (define tri3 |
---|
98 | (case-lambda |
---|
99 | ((x y z f g h c) (c (f x y z) (g x y z) (h x y z))) |
---|
100 | ((f g h c) (lambda (x y z) (tri3 x y z f g h c))) |
---|
101 | ((f g h) (lambda (c) (tri3 f g h c))) |
---|
102 | ((c) (lambda (f g h) (tri3 f g h c))) |
---|
103 | (() (lambda (c) (tri3 c))))) |
---|
104 | |
---|
105 | (define tri@ |
---|
106 | (case-lambda |
---|
107 | ((x y z f c) (c (f x) (f y) (f z))) |
---|
108 | ((f c) (lambda (x y z) (tri@ x y z f c))))) |
---|
109 | |
---|
110 | ;; |
---|
111 | |
---|
112 | (define dip |
---|
113 | (case-lambda |
---|
114 | ((x y f c) (c (f x) y)) |
---|
115 | ((f c) (lambda (x y) (dip x y f c))))) |
---|
116 | |
---|
117 | ;; |
---|
118 | |
---|
119 | (define dup |
---|
120 | (case-lambda |
---|
121 | ((x c) (c x x)) |
---|
122 | ((c) (lambda (x) (dup x c))))) |
---|
123 | |
---|
124 | (define dupd |
---|
125 | (case-lambda |
---|
126 | ((x y c) (c x x y)) |
---|
127 | ((c) (lambda (x y) (dupd x y c))))) |
---|
128 | |
---|
129 | ;; |
---|
130 | |
---|
131 | (define swap |
---|
132 | (case-lambda |
---|
133 | ((x y c) (c y x)) |
---|
134 | ((c) (lambda (x y) (swap x y c))))) |
---|
135 | |
---|
136 | ;; |
---|
137 | |
---|
138 | (define drop |
---|
139 | (case-lambda |
---|
140 | ((x c) (c)) |
---|
141 | ((c) (lambda (x) (drop x c))))) |
---|
142 | |
---|
143 | (define drop/2 |
---|
144 | (case-lambda |
---|
145 | ((x y c) (c x)) |
---|
146 | ((c) (lambda (x y) (drop/2 x y c))))) |
---|
147 | |
---|
148 | ) ;module stack-combinators |
---|