1 | ;;;; stack-combinators.scm |
---|
2 | ;;;; Kon Lovett, Mar '09 |
---|
3 | |
---|
4 | (declare |
---|
5 | (usual-integrations) |
---|
6 | (generic) |
---|
7 | (inline) |
---|
8 | (local) |
---|
9 | (no-procedure-checks) ) |
---|
10 | |
---|
11 | (module stack-combinators (;export |
---|
12 | uni uni2 uni3 uni@ |
---|
13 | bi bi2 bi3 bi@ |
---|
14 | tri tri2 tri3 tri@ |
---|
15 | dip |
---|
16 | dup dupd |
---|
17 | swap |
---|
18 | drop drop/2) |
---|
19 | |
---|
20 | (import scheme chicken) |
---|
21 | |
---|
22 | ;; |
---|
23 | |
---|
24 | (define uni |
---|
25 | (case-lambda |
---|
26 | ((x f c) (c (f x))) |
---|
27 | ((f c) (lambda (x) (uni x f c))) |
---|
28 | ((c) (lambda (f) (uni f c))) |
---|
29 | (() (lambda (c) (uni c))))) |
---|
30 | |
---|
31 | (define uni2 |
---|
32 | (case-lambda |
---|
33 | ((x y f c) (c (f x y))) |
---|
34 | ((f c) (lambda (x y) (uni2 x y f c))) |
---|
35 | ((c) (lambda (f) (uni2 f c))) |
---|
36 | (() (lambda (c) (uni2 c))))) |
---|
37 | |
---|
38 | (define uni3 |
---|
39 | (case-lambda |
---|
40 | ((x y z f c) (c (f x y z))) |
---|
41 | ((f c) (lambda (x y z) (uni3 x y z f c))) |
---|
42 | ((c) (lambda (f) (uni3 f c))) |
---|
43 | (() (lambda (c) (uni3 c))))) |
---|
44 | |
---|
45 | (define uni@ |
---|
46 | (case-lambda |
---|
47 | ((x f c) (c (f x))) |
---|
48 | ((f c) (lambda (x) (uni@ x f c))))) |
---|
49 | |
---|
50 | ;; |
---|
51 | |
---|
52 | (define bi |
---|
53 | (case-lambda |
---|
54 | ((x f g c) (c (f x) (g x))) |
---|
55 | ((f g c) (lambda (x) (bi x f g c))) |
---|
56 | ((f g) (lambda (c) (bi f g c))) |
---|
57 | ((c) (lambda (f g) (bi f g c))) |
---|
58 | (() (lambda (c) (bi c))))) |
---|
59 | |
---|
60 | (define bi2 |
---|
61 | (case-lambda |
---|
62 | ((x y f g c) (c (f x y) (g x y))) |
---|
63 | ((f g c) (lambda (x y) (bi2 x y f g c))) |
---|
64 | ((f g) (lambda (c) (bi2 f g c))) |
---|
65 | ((c) (lambda (f g) (bi2 f g c))) |
---|
66 | (() (lambda (c) (bi2 c))))) |
---|
67 | |
---|
68 | (define bi3 |
---|
69 | (case-lambda |
---|
70 | ((x y z f g c) (c (f x y z) (g x y z))) |
---|
71 | ((f g c) (lambda (x y z) (bi3 x y z f g c))) |
---|
72 | ((f g) (lambda (c) (bi3 f g c))) |
---|
73 | ((c) (lambda (f g) (bi3 f g c))) |
---|
74 | (() (lambda (c) (bi3 c))))) |
---|
75 | |
---|
76 | (define bi@ |
---|
77 | (case-lambda |
---|
78 | ((x y f c) (c (f x) (f y))) |
---|
79 | ((f c) (lambda (x y) (bi@ x y f c))))) |
---|
80 | |
---|
81 | ;; |
---|
82 | |
---|
83 | (define tri |
---|
84 | (case-lambda |
---|
85 | ((x f g h c) (c (f x) (g x) (h x))) |
---|
86 | ((f g h c) (lambda (x) (tri x f g h c))) |
---|
87 | ((f g h) (lambda (c) (tri f g h c))) |
---|
88 | ((c) (lambda (f g h) (tri f g h c))) |
---|
89 | (() (lambda (c) (tri c))))) |
---|
90 | |
---|
91 | (define tri2 |
---|
92 | (case-lambda |
---|
93 | ((x y f g h c) (c (f x y) (g x y) (h x y))) |
---|
94 | ((f g h c) (lambda (x y) (tri2 x y f g h c))) |
---|
95 | ((f g h) (lambda (c) (tri2 f g h c))) |
---|
96 | ((c) (lambda (f g h) (tri2 f g h c))) |
---|
97 | (() (lambda (c) (tri2 c))))) |
---|
98 | |
---|
99 | (define tri3 |
---|
100 | (case-lambda |
---|
101 | ((x y z f g h c) (c (f x y z) (g x y z) (h x y z))) |
---|
102 | ((f g h c) (lambda (x y z) (tri3 x y z f g h c))) |
---|
103 | ((f g h) (lambda (c) (tri3 f g h c))) |
---|
104 | ((c) (lambda (f g h) (tri3 f g h c))) |
---|
105 | (() (lambda (c) (tri3 c))))) |
---|
106 | |
---|
107 | (define tri@ |
---|
108 | (case-lambda |
---|
109 | ((x y z f g h c) (c (f x) (g y) (h z))) |
---|
110 | ((f g h c) (lambda (x y z) (tri@ x y z f g h c))))) |
---|
111 | |
---|
112 | ;; |
---|
113 | |
---|
114 | (define dip |
---|
115 | (case-lambda |
---|
116 | ((x y f c) (c (f x) y)) |
---|
117 | ((f c) (lambda (x y) (dip x y f c))))) |
---|
118 | |
---|
119 | ;; |
---|
120 | |
---|
121 | (define dup |
---|
122 | (case-lambda |
---|
123 | ((x c) (c x x)) |
---|
124 | ((c) (lambda (x) (dup x c))))) |
---|
125 | |
---|
126 | (define dupd |
---|
127 | (case-lambda |
---|
128 | ((x y c) (c x x y)) |
---|
129 | ((c) (lambda (x y) (dupd x y c))))) |
---|
130 | |
---|
131 | ;; |
---|
132 | |
---|
133 | (define swap |
---|
134 | (case-lambda |
---|
135 | ((x y c) (c y x)) |
---|
136 | ((c) (lambda (x y) (swap x y c))))) |
---|
137 | |
---|
138 | ;; |
---|
139 | |
---|
140 | (define drop |
---|
141 | (case-lambda |
---|
142 | ((x c) (c)) |
---|
143 | ((c) (lambda (x) (drop x c))))) |
---|
144 | |
---|
145 | (define drop/2 |
---|
146 | (case-lambda |
---|
147 | ((x y c) (c x)) |
---|
148 | ((c) (lambda (x y) (drop/2 x y c))))) |
---|
149 | |
---|
150 | ) ;module stack-combinators |
---|